Opening the Black Box:

Low-dimensional dynamics in high-dimensional
recurrent neural networks

David Sussillo*

sussillo@stanford.edu
Department of Electrical Engineering
Neurosciences Program
Stanford University
Stanford, California 94305-9505

and
Omri Barak*

0b2194 @columbia.edu
Department of Neuroscience
Columbia University College of Physicians and Surgeons
New York NY 10032-2695
present address:
Rappaport Faculty of Medicine,
Technion Israeli Institute of Technology,
Haifa, Israel

* Equal contribution

Abstract

Recurrent neural networks (RNNs) are useful tools for learning nonlinear rela-
tionships between time-varying inputs and outputs with complex temporal depen-
dencies. Recently developed algorithms have been successful at training RNN's
to perform a wide variety of tasks, but the resulting networks have been treated
as black boxes — their mechanism of operation remains unknown. Here we ex-
plore the hypothesis that fixed points, both stable and unstable, and the linearized
dynamics around them, can reveal crucial aspects of how RNNs implement their
computations. Further, we explore the utility of linearization in areas of phase-
space that are not true fixed points, but merely points of very slow movement. We
present a simple optimization technique that is applied to trained RNNs to find the
fixed points and slow points of their dynamics. Linearization around these slow
regions can be used to explore, or reverse-engineer, the behavior of the RNN.
We describe the technique, illustrate it on simple examples, and finally showcase
it on three high-dimensional RNN examples: a 3-bit flip-flop device, an input-
dependent sine wave generator and a two-point moving average. In all cases, the
mechanisms of trained networks could be inferred from the sets of fixed and slow
points and the linearized dynamics around them.

1 Introduction

A recurrent neural network (RNN) is a type of artificial neural network with feed-
back connections. Because the network has feedback it is ideally suited for prob-
lems in the temporal domain such as implementing temporally complex input-
output relationships, input-dependent pattern generation, or autonomous pattern
generation. However, training RNNs is widely accepted as a difficult problem
(Bengio et al., 1994). Recently, there has been progress in training RNNs to
perform desired behaviors (Maass et al., 2002; Jaeger and Haas, 2004; Maass
et al., 2007; Sussillo and Abbott, 2009; Martens and Sutskever, 2011). Jaeger
and Hass developed a type of RNN called an echostate network, which achieves
good performance by allowing for a random recurrent pool to receive feedback
from a set of trained output units (Jaeger and Haas, 2004). Sussillo and Ab-
bott (Sussillo and Abbott, 2009) derived a rule to train the weights of such an
echostate network operating in the chaotic regime. Further, Martens and Sutskever
(Martens and Sutskever, 2011) employed a second-order optimization technique
called Hessian-Free optimization to train all the weights in an RNN using back-
propagation through time to compute the gradient (Rumelhart et al., 1985). Given
these recent developments, it is likely that RNNs will enjoy more popularity in the
future than they have to date.

Because such supervised training algorithms specify the function to perform
without specifying how to perform it, the exact nature of how these trained RNNs
implement their target functions remains an open question. The resulting networks
are often viewed as black boxes. This is in contrast to network models that were
explicitly constructed to implement a specific known mechanism (e.g. see (Wang,
2008; Hopfield, 1982)). One way to make progress may be to view an RNN as a
nonlinear dynamical system (NLDS) and, in this light, there is a rich tradition of
inquiry that can be exploited.

A nonlinear dynamical system is, as the name implies, nonlinear. As such, the
qualitative behavior of the system varies greatly between different parts of phase
space and can be very difficult to understand. A common line of attack when
analyzing NLDSs is therefore to study different regions in phase space separately.
The most common anchors to begin such analyses are fixed points. These are
points in phase space exhibiting zero motion, with the invaluable property that
the dynamics near a fixed point are approximately linear and thus easy to analyze.
Other, faster, points in phase space can also provide insight into the system’s mode
of operation, but are harder to systematically locate and analyze.

In this contribution, we show that there are other regions in phase space, which

we call slow points, where linearization is valid. Our hypothesis is that under-
standing linearized systems around fixed and slow points in the vicinity of typ-
ical network trajectories can be insightful regarding computational mechanisms
of RNNs. We provide a simple optimization technique for locating such regions.
The full analysis would therefore entail finding all candidate points of the RNN,
linearizing the dynamics around each one, and finally trying to understand the
interaction between different regions (Strogatz, 1994; Ott, 2002). We illustrate
the application of the technique using both fixed points and slow points. The
principles are first illustrated with a simple two-dimensional example, followed
by high-dimensional trained RNNs performing memory and pattern generation
tasks.

2 Fixed points

As stated in the introduction, fixed points are common anchors to start analysis
of the system. Fixed points are either stable or unstable, meaning that the motion
of the system, when started in the vicinity of a given fixed point, either converges
towards or diverges away from that fixed point, respectively. Stable fixed points,
also known as attractors, are important because the system will converge to them,
or, in the presence of noise, dwell near them. Unstable fixed points come in more
varieties, having one or more unstable modes, up to the case of a completely
unstable fixed point (repeller). A mode is an independent pattern of activity that
arises when the linear system is diagonalized. When attempting to understand the
interaction between different attractors, unstable fixed points with a few unstable
modes are often very useful. For instance, a saddle point with one unstable mode
can funnel a large volume of phase space through its many stable modes, and then
send them to two different attractors depending on which direction of the unstable
mode is taken.

Finding stable fixed points is often as easy as running the system dynamics
until it converges (ignoring limit cycles and strange attractors). Finding repellers
is similarly done by running the dynamics backwards. Neither of these methods,
however, will find saddles. The technique we introduce allows these saddle points
to be found, along with both attractors and repellers. As we will demonstrate,
saddle points that have mostly stable directions, with only a handful of unstable
directions, appear to be of high significance when studying how RNNs accomplish
their tasks (a related idea is explored in (Rabinovich et al., 2008)).

3 Linear approximations
Consider a system of first-order differential equations
x = F(x), (1

where X is an N-dimensional state vector and F is a vector function that defines
the update rules (equations of motion) of the system. We wish to find values x*
around which the system is approximately linear. Using a Taylor series expansion,
we expand F(x) around a candidate point in phase space, x*:

1
F(x* + 6x) = F(x") + F'(x")6x + E(SXF”(X*)(SX +... 2)

Because we are interested in the linear regime, we want the first derivative term
of the right hand side to dominate the other terms. Specifically, we are looking for
points x*, and perturbations around them, dx = x — x*, such that

[F'(x")6x| > [F(x")] 3)

1
[F'(x")ox| > ‘E(‘iXF”(X*)(?x . 4)

From inequality 3 it is evident why fixed points (x* such that F(x*) = 0) are good
candidates for linearization. Namely, the lower bound for éx is zero, and thus
there is always some region around x* where linearization should be valid. They
are not, however, the only candidates. A slow point, having a non-zero, but small,
value of F(x*) could be sufficient for linearization. In this case, examining the
linear component of the computations of a RNN may still be reasonable because
the inequalities can still be satisfied for some annulus-like region around the slow
point.

Allowing |F(x*)| > 0 means we are defining an affine system, which can be
done anywhere in phase space. However, inequalities 3 and 4 highly limit the
set of candidate points we are interested in. So we end up examining true linear
systems at fixed points and affine systems at slow points. The latter are not generic
affine systems since the constant is so small as to be negligible at the time scale
on which the network operates. It is in these two ways that we use the term
linearization.

This observation motivated us to look for regions where the norm of the dy-
namics, [F(x)|, is either zero or small. To this end, we define an auxiliary scalar
function

1
qx) = 5 IF()P . (&)

Intuitively, the function ¢ is related to the speed, or kinetic energy of the sys-
tem. Speed is the magnitude of the velocity vector, so g is the squared speed
divided by two, which is also the expression for the kinetic energy of an object
with unit mass.

There are several advantages to defining ¢ in this manner. First, it is a scalar
quantity and thus amenable to optimization algorithms. Second, as ¢ is a sum of
squares, g(x*) = 0 if and only if x* is a fixed point of F. Third, by minimizing
|[F(x)|, we can find candidate regions for linearization that are not fixed points, as-
suming inequalities 3 and 4 are satisfied, thus expanding the scope of linearization
techniques.

To understand the conditions when ¢ is at a minimum, consider the gradient
and Hessian of g:

(9q (9Fk
2 _ Tk 6
(9x,- Z ax,- i ()
g N OFOF, < . 0°F,
=) KT ' 7
0x;0x Ox; Ox; - Zk:xk 0x;0x;)

For g to be at a minimum, the gradient (equation 6) has to be equal to the zero
vector, and the Hessian (equation 7) has to be positive definite. There are three
ways for the gradient to be zero.

1. If X = 0, for all k, then the system is at a fixed point, and this is a global
minimum of g.

2. If the entire Jacobian matrix, %(X), 1s zero at X, and the second term of the
J

Hessian is positive definite, then ¢ may be at a local minimum.

3. Finally, ¢ may be at a minimum if X is a zero eigenvector of {89_5- For high-
dimensional systems, this is a much less stringent requirement than the pre-
vious one, and thus tends to be most common for local minima in RNNs.

In summary, our approach consists of using numerical methods to minimize
q to find fixed points and slow points. Because the systems we study may have
many different regions of interest, the optimization routine is run many times from
different initial conditions (ICs) that can be chosen based on the particular prob-
lem at hand. Typically, these ICs are points along RNN system trajectories during
computations of interest. In the following sections, we will demonstrate our ap-
proach on cases involving fixed points for both low- and high- dimensional sys-
tems. Then we will show the advantages of linearizing around regions that are not
fixed points.

3.1 Two-dimensional example

A simple 2D example helps to demonstrate minimization of the auxiliary function
g and evolution of x = F(x). For this section, we define the dynamical system
x = F(x) as follows

X1 = (1= x))xs (8)
XQ:)C]/Z—)Q. (9)

The system has three fixed points: A saddle at (0, 0) and two attractors at (1, 1/2)
and (—1,—1/2). Based on this definition of F, the function ¢ is defined as

g(x) = 1 (x% (1 — x%)2 +(x1/2 - xz)z). Note that the fixed points of X = F(x) are
the zeros of q.

A number of system trajectories defined by evolving the dynamical system
x = F(x) are shown in Figure 1 in thick black lines. The three fixed points of x =
F(x) are shown as large "x’s. The color map shows the values of g(x), pink codes
large values and cyan codes small values. This color map helps in visualizing how
minimization of g proceeds.

Studying the system trajectories alone might lead us to suspect that a saddle
point is mediating a choice between two attractors (black "x’). But the location of
this hypothetical saddle is unknown. Using trajectories that are close to the saddle
behavior, we can initiate several sample minimizations of ¢ (thick red lines), and
see that indeed two of them lead to the saddle point (green ’x’). For this example,
two different minimization trajectories originate from the same trajectory of the
dynamical system.

~14

-16

-18
I°g1oq

Figure 1: A 2D example of the behavior of minimization of ¢ relative to the
defining dynamical system. The trajectories of a simple 2D dynamical system,
x = F(x), defined as x; = (1 —x%)xz, Xy = x1/2—x, are shown in thick black lines.
Shown with black 'x’ are the two attractors of the dynamical system. A saddle
point is denoted with a green ’x’. Gradient descent on the auxiliary function g is
shown in thick red lines. Minimization of ¢ converges to one of the two attractors
or to the saddle point, depending on the IC. The value of g is shown with a color
map (bar indicates log,,¢) and depends on the distance to the fixed points of
x = F(x).

3.2 RNNs
Now consider X = F(x) defined as a recurrent neural network,
N I
X =—x; + Z J,-krk + Z B,-kuk (10)
k k
ri=h(x), (11)

where x is the N-dimensional state called the “activations”, r = h(x) are the “fir-
ing rates”, defined as the element-wise application of the nonlinear function 4
to x. The recurrence of the network is defined by the matrix J and the network
receives the /-dimensional input u through the synaptic weight matrix B. In the
cases we study, which are typical of training from random initialization, the matrix
elements, J;;, are taken from a normal distribution with zero mean and variance
g%/N, where g is a parameter that scales the network feedback.

After random initialization, the network is trained, typically with a supervised
learning method. We assume that such an RNN has already been optimized to
perform either an input-output task or a pattern generation task. Our goal is to
explore the mechanism by which the RNN performs the task by finding the fixed
points and slow points of X = F(x) and the behavior of the network dynamics
around those points.

To employ the technique on the RNN defined by equations 10-11, we define
q as before, g(x) = % IF(x)|>. The Jacobian of the network, useful for defining the
gradient and Hessian of ¢, is given by

OF;
— ==6;; + J;;r’ 12
5. = 0 (12)
where ¢;; is defined to be 1 if i = j, and otherwise 0. Also, r;. is the derivative of
the nonlinear function /4, with respect to its input, x;.

3.3 3-Bit flip-flop example

We now turn to a high-dimensional RNN implementing an actual task. We first
define the task, then describe the training and show performance of the network.
Finally, we use our technique to locate the relevant fixed points of the system and
use them to understand the underlying network mechanism.

Consider the 3-bit flip-flop task shown in Figure 2. A large recurrent network
has 3 outputs showing the state of 3 independent memory bits. Transient pulses
from three corresponding inputs set the state of these bits. For instance, input
2 (dark green) is mostly zero, but at random times emits a transient pulse that
is either +1 or -1. When this happens, the corresponding output (output 2, light
green) should reflect the sign of the last input pulse, taking and sustaining a value
of either +1 or -1. For example, the first green pulse does not change the memory
state, because the green output is already at +1. The second green pulse, however,
does. Also, the blue and red pulses should be ignored by the green output. An

+H

Figure 2: Example inputs and outputs for the 3-bit flip-flop task. Left panel.
Sample input and output to the 3-bit flip-flop network. The three inputs and out-
puts are shown in pairs (dark red / red, dark green / green and dark blue / blue,
respectively). Brief input pulses come in with random timing. For a given input
/ output pair, the output should transition to +1 or stay at +1 for an input pulse
of +1. The output should transition to -1 or stay at -1 if the corresponding in-
put pulse is -1. Finally, all three outputs should ignore their non-matching input
pulses. Right panel. Network with echostate architecture used to learn the 3-bit
flip-flop task. Trained weights are shown in red.

RNN that performs this task for 3 input/output pairs must then represent 2% =
memories and so is a 3-bit flip-flop device, while ignoring the cross-talk between
differing input / output pairs.

We trained a randomly connected network (N = 1000) to perform the 3-bit
flip-flop task using the FORCE learning algorithm(Sussillo and Abbott, 2009)
(see Methods). We then performed the linearization analysis, using the trajecto-
ries of the system during operation as ICs. Specifically, we spanned all possible
transitions between the memory states using the inputs to the network, and then
randomly selected 600 network states out of these trajectories to serve as ICs for
the g optimization. The algorithm resulted in 26 distinct fixed points, on which
we performed a linear stability analysis. Specifically, we computed the Jacobian
matrix, equation 12, around each fixed point and performed an eigenvector de-
composition on these matrices.

The resulting stable fixed points and saddle points are shown in Figure 3, left
panel. To display the results of these analyses, the network state x(f) is plotted

10

in the basis of the first three principal components of the network activations (the
transient pulses reside in other dimensions, one is shown in the right panel of
Figure 3). In black 'x’ are the fixed points corresponding to each of the 8 mem-
ory states. These fixed points are attractors and the perturbative linear dynamics
around each fixed point are stable. Shown in blue are the 24 neural trajectories
(activation variable x) showing the effect of an input pulse that flips the 3-bit flip-
flop system by one bit. The green ’x’ are saddles, fixed points with 1 unstable
dimension and N-1 stable dimensions. Shown in thin red lines are network trajec-
tories started just off the saddle on the dimension of instability. As we will show,
the saddles are utilized by the system to mediate the transition from one memory
state to another (shown in detail on the right panel). Finally, shown in magenta ’x’
are 2 fixed points with 4 unstable dimensions each (thick red lines). Again, sample
network trajectories were plotted with the ICs located just off each fixed point on
the 4 dimensions of instability. The unstable trajectories appear to connect three
memory states, with no obvious utility.

To verify whether indeed the saddle points are utilized by the system to switch
from one memory to another we focus on a single transition, specifically from
memory (-1,-1,-1) to memory(1, -1, -1). We chose a visualization space that
allows both the effects of input perturbation and memory transitions in state space
(PC3 and the relevant input vector) to be seen. We varied the amplitude of the
relevant input pulse in small increments from O to 1 (Figure 3, right panel). In blue
is shown the normal system trajectory (pulse amplitude 1) during the transition for
both the input driven phase and the relaxation phase. In cyan are shown the results
of an input perturbation experiment using intermediate pulse sizes. Intermediate
amplitude values result in network trajectories that are ever closer to the saddle
point, illustrating its mechanistic role in this particular memory transition.

It is important to note that this network was not designed to have 8 attractors
and saddle points between them. In fact, as Figure 3 shows, there can be more
than one saddle point between two attractors. This is in contrast to networks
designed to store 8 patterns in memory (Hopfield and Tank, 1986) where no such
“redundant” saddle points appear.

3.4 Sine wave generator example

Next, we demonstrate that our analysis method is effective in problems involving
pattern generation. Because pattern generation may involve system trajectories
that are very far from any particular fixed point, it is not obvious a priori that
finding fixed points is helpful. For our pattern generation example, we trained a

11

Input

\\3 riven

11

Jnput
V4 \/PC3

(1,-1,-1)

Figure 3: Low-dimensional phase space representation of 3-bit flip-flop task.
Left Panel - The 8 memory states are shown as black ’x’. In blue are shown all
24 1-bit transitions between the 8 memory states of the 3-bit flip-flop. The saddle
fixed points with 1 unstable dimension are shown with green ’x’. A thick red line
denotes the dimension of instability of these saddles points. In thin red are the
network trajectories started just off the unstable dimensions of the saddle points.
These are heteroclinic orbits between the saddles that decide the boundaries and
the attractor fixed points that represent the memories. Finally, with magenta ’x’
are shown other fixed points, all with 4 unstable dimensions. Thick red lines show
these dimensions of instability and thin red lines show network trajectories started
just off the fixed points in these unstable dimensions. Right Panel - Demonstration
that a saddle point mediates the transitions between attractors. The input for a
transition (circled region in left panel) was varied from O to 1 and the network
dynamics are shown (blue for normal input pulse and cyan for the rest). As the
input pulse increased in value, the network came ever closer to the saddle, and
then finally transitioned to the new attractor state.

12

network (N = 200) that received a single input, which specified 1 out of 51 fre-
quency values in radians per unit time. The output of the network was defined to
be a sine wave with the specified target frequency and unity amplitude. The target
frequency was specified by a static input (see Methods and Figure 4A). Again, we
performed the analysis, starting from ICs in the 51 different oscillation trajecto-
ries. We took care to include the correct static input value for the optimization
of g (see Methods). This means the fixed points found were conditionally depen-
dent on their respective static input value and did not exist otherwise. With this
analysis we found a fixed point for all oscillations centered in the middle of the
trajectory’.

For all 51 fixed points, a linear stability analysis revealed that the linearized
system had only two unstable dimensions and N-2 stable dimensions. A state
space portrait showing the results of the fixed point and linear stability analyses is
shown in Figure 4B. The network state (activation variable x) is plotted in the basis
of the first three principal components of the network activations. Shown in blue
are the neural trajectories for all 51 oscillations. The green 0’ show each of the 51
fixed points, with the unstable modes denoted by red lines. As mentioned above,
the actual dynamics are far from the fixed points, and thus not necessarily influ-
enced by them. To show that the linear analysis can provide a good description
of the dynamics, we compared the absolute value of the imaginary components of
one of the two unstable dimensions (they come in complex conjugate pairs) to the
desired frequency in radians specified in the target trajectories (Figure 4C). There
is very good agreement between the target frequency and the absolute value of
the imaginary part of the unstable mode of the linearized systems (proximity of
red circles to the black ’x’s), indicating that the oscillations defined by the linear
dynamics around each fixed point explained the behavior of the RNN for all target
frequencies. We verified that the validity of the linear approximation stems from
the inequalities 3 and 4, by computing the norms of the linear and quadratic terms
of the Taylor expansion. Indeed, for all 51 trajectories, the norm of the linear term
was at least twice that of the quadratic term (not shown).

!For the four slowest oscillations we found exactly two fixed points, one centered in the middle
of the oscillation with the other outside the trajectory. All other oscillations had exactly one fixed
point. Based on the results of our stability analysis, for these four oscillations with two fixed points,
we focused on the fixed point centered in the middle of the oscillation, which was consistent with
how the oscillations with one fixed point worked.

13

Output
—
Sl
(,‘,)
I
k\
Ssaul}
/’_,)

Time
> 06 -
C
o K
8 045
~—" =3
> .l';.
8 03 a‘....
PC2 % ' g
PC1 L 0.15]
pC3 10 20 30 40 50

Fixed point #

Figure 4: Input-dependent sine generator task. A Task definition. The network
was given a static input whose amplitude denoted a frequency in radians/sec and
the network was trained to output a sine wave with the specified target frequency
with unity amplitude. Shown in red and green are two input/output conditions.
The trained weights of the network are shown in red. B State space depiction
of trajectories and fixed points (projected to first 3 PCs). Shown in blue are the
network trajectories for each of the 51 frequencies during pattern generation. In
green '0’ are 51 fixed points, one for each frequency, that are conditionally defined
based on corresponding static input. Shown in red are the two eigenvectors of the
unstable plane of the linearized system around each fixed point that are responsible
for the oscillatory dynamics. C Comparison of the target frequency with that
predicted by the fixed points. The abscissa indexes the 51 input dependent fixed
points found in the system. The ordinate shows the values of the imaginary part
of the eigenvalue of the linearized systems (red) and the desired frequency in
radians/sec (black) for all fixed points.

14

4 Beyond fixed points

While fixed points are obvious candidates for linearization, they are not the only
points in phase space where linearization makes sense. Minimizing g can lead to
regions with a dominating linear term in their Taylor expansion, even if the zero
order term is non-zero. We first show a 2D example where considering a local
minimum of g can provide insight into the system dynamics. Then, we analyze a
high-dimensional RNN performing a 2-point moving average of randomly timed
input pulses, and demonstrate that points in phase space with small, nonzero val-
ues of g can be instructive in reverse engineering the RNN.

4.1 Local minima of g

Consider the 2D dynamical system defined by

i =x,—(x] +1/4 +a) (13)

)'Cz = X1 — Xp. (14)

This system has two nullclines that intersect for a < 0. In this case, g will have
two minima coinciding with the fixed points (Figure 5, left panel). Ata = 0
the system undergoes a saddle-node bifurcation, and if a is slightly larger than
0, there is no longer any fixed point. The function g, however, still has a local
minimum exactly between the two nullclines at x4 = (1/2,1/2 + a/2). This can
be expected, because g measures the speed of the dynamics, and this ghost of a
fixed point is a local minimum of speed. The system trajectories shown in Figure
5, right panel, indicate that this point represents a potentially interesting area of
the dynamics, as it funnels the trajectories into one common pathway, and the
dynamics are considerably slower near it (not shown in the figure).

While finding the location of such a ghost can be useful, we will go beyond it
and consider the linear expansion of the dynamics around this point:

[)=rbe @)= A0)30) oo

As expected from our discussion of conditions for minima of ¢, the Jacobian
has one zero eigenvalue with eigenvector (1, 1). The second eigenvalue is — V2,
with an orthogonal eigenvector (1,—1). The full behavior near x, is therefore

15

2 2
0 » 0 \
) /:_(\\/\\—x =
2 2 0 2 4 _44 2 0 2 4
X4 Xq

Figure 5: Ghosts and local minima of g. Left Panel - Dynamics of the system
described by equations 13 and 14 with a = —0.3. There are two fixed points — a
saddle and a node (red points), both located at the intersection of the two nullclines
(green lines), and are global minima of g. Right Panel - The same system with
a = 0.3. There are no fixed points, but the local minimum of ¢ (red point) denotes
a ghost of a fixed point, and clearly influences the dynamics. The linear expansion
around this ghost reveals a strongly attracting eigenvector (pink inward arrows),
corresponding to the dynamics, and a zero eigenvector (pink lines), along which
the dynamics slowly flows as the system is not at a true fixed point.

attraction along one axis and a slow drift along the other, the latter arising from
the fact that x, is not a true fixed point (magenta lines in the figure inset). Though
lacking any fixed point, the dynamics of this system can still be understood using
linearization around a candidate point, with the additional understanding that the
drift will affect the system on a very slow time scale.

In general, when linearizing around a slow point, x*, the local linear system
takes the form

6x = F'(x°) 6x + F(x*), (16)

where the zero order contribution, F(x*), can be viewed as a constant input to the
system. While equation 16 makes sense for any point in phase space, it is the
slowness of the point as defined by inequalities 3 and 4 that makes the equation
useful. In practice, we’ve found that the constant term, F(x*), is negligible, but we
include it for correctness.

16

0.5¢

0 L

-0.5;

Input / Output / Target Values

10 20 30_40 50 60 70

Time (s)
Figure 6: Example inputs, outputs and targets for the 2-point moving average
task. The 2-point moving average task implements the average of the last two

input pulses (black). The target moving average is shown in green and the output
of the trained RNN is shown in red.

4.2 Approximate plane attractor

So far, we showed the utility of considering both fixed points of the dynamics,
and local minima of g. The inequalities (3, 4) suggest, however, that any region
with a small value of ¢g(x) is a good candidate for linearization. We demonstrate
this point using an RNN trained on a 2-point moving average task. In this task,
the network receives analog-valued input pulses at random times. Following each
pulse, the network has to output the average of the last two input pulses (Figure
6).

A perfect implementation of a 2-point moving average requires storage of two
values in memory. In a designed network one might implement such a memory
requirement by explicitly constructing a plane attractor: a 2D manifold of attract-
ing fixed points. For example, one dimension to remember the last input, I1, and
another dimension to remember the input before the last, 10.

Continuing with the black-box optimization approach, we trained a randomly
initialized 100-dimensional RNN to perform this task, and then used our algorithm
to locate any fixed points, local minima of ¢, and slow points (see Methods). Our
analysis revealed that the network instead created a two-dimensional manifold of
slow points, an approximate plane attractor, as shown in Figure 7A,B. The black

17

0.5

1§
o,
S \
\ = \\\'\\ .
B | \ %\’ «:?x\i f\:\
Qo DI

Figure 7: 2D approximate plane attractor in 2-point moving average task.
The 2-point moving average task requires two variables to complete the task. The
RNN holds those two variables in an approximate plane attractor. A The slow
points (¢ < le-4) form a 2D manifold. The black '+’ show the slow points of the
network. All slow points have two modes with approximately zero eigenvalues.
B Dynamical picture of 2D manifold of slow points. There are two fixed points
(grey 'x’), one with two stable directions tangent to the manifold and another with
one stable and one unstable dimension tangent to the manifold. The network was
simulated for 1000s from slow points on the manifold (¢ < le-7) as the ICs. These
slow trajectories are shown with blue lines ending in arrows. To compare with the
fast time scales of normal network operation, we show the network computing a
moving average that includes a new input. This network trajectory lasted for about
30s (orange). Each At of the one second input is shown with orange squares.

+’ in panel A show all points with values of g smaller than 1e-4 in the space of the
first 3 principal components. The linearized dynamics around all slow points had
two modes with approximately zero eigenvalues and N-2 fast decaying modes.
In addition to the many slow points, the optimization found two fixed points.
These two fixed points organize the extremely slow dynamics on the approximate
plane attractor. Shown in Figure 7B is the dynamical structure on the 2D mani-
fold. Each slow point was used as an IC to the network and the network run for
1000s (blue trajectories with arrows). These trajectories demonstrate the precise
dynamics at slow time scales that become the approximately fixed dynamics at
the timescale of normal network operation. To demonstrate the fast decaying dy-
namics to the manifold, the network was run normally with a single trial, which
took around 30s (orange trajectory).

18

To test the utility of linearizing the RNN around the slow points, we attempted
to replace the full nonlinear system with a succession of linear systems defined by
the slow points (Figure 8). Specifically, we defined a linear time-varying dynami-
cal system (LTVDS, see Methods), in which the dynamics at each time point were
the linear dynamics induced by the closest slow point. We then compared the state
transition induced by a single input pulse as implemented by both the RNN and
the LTVDS across many random inputs and ICs (Figure 8 A,B show examples).
Note that whenever a new input pulse comes in, the network dynamics must im-
plement two transitions. The I1 value must shift to the I0 value and the latest
input pulse value must shift to the I1 value. Our test of the LTVDS approximation
thus measured the mean squared error between the RNN and the LTVDS for the
shifted values 11 to 10 and input to I1 (Figure 8, panels C and D, respectively).
The errors were 0.074, and 0.0067, for I1—10 and input—I1.

Finally, we demonstrate that our method is not dependent on a finely tuned
RNN. We structurally perturbed the RNN that implemented the 2-point mov-
ing average by adding to the recurrent matrix random Gaussian noise with zero
mean and standard deviation, 1 (see Methods). The dependency of the output
error on the size of the structural perturbation is shown in Figure 9A. An exam-
ple perturbed RNN with network inputs and output is shown in Figure 9B, with
n = 0.006. Unsurprisingly, the main problem is a drift in the output value, indicat-
ing that the quality of the approximate plane attractor has been heavily degraded.
We applied our technique to the structurally perturbed network to study the effects
of the perturbation. Figures 9C,D show that the same approximate plane attrac-
tor dynamical structure is still in place, though much degraded. The slow point
manifold is still in the same approximate place, although the g values of all slow
points increased. In addition, there is a fixed point detached from the manifold.
Nevertheless, the network is able to perform with mean squared error less than
0.01, on average.

5 Discussion

Recurrent neural networks, when used in conjunction with recently developed
training algorithms, are powerful computational tools. The downside of these
training algorithms is that the resulting networks are often extremely complex an
so their underlying mechanism remains unknown. Here we used methods from
nonlinear dynamical system theory to pry open the black box. Specifically, we
showed that finding fixed points and slow points (points where inequalities (3, 4)

19

-
w

S & o o

|

|

[
i

1
—

Input/Output/Target values

0 20 40 60 80
Time (s)

H 1 Input oulge value

Figure 8: Comparison of the transition dynamics between the RNN and the
linear time-varying approximation. A Four separate trials of the RNN (red
lines) and the LTVDS approximation (dotted red lines). B The same trials plotted
in the space of the first three PCs of the network activity. The orange squares show
the ICs, based on the input pulse, given to both RNN and LTVDS. The RNN tra-
jectories are orange, the LTVDS are dotted orange. Black dots are the 2000 slow
points used in simulating the LTVDS. C, D In implementing the 2-point moving
average, whenever a new input pulse comes in, the RNN must successfully shift
the value of the last input (I1) to the value of the input before last (10), panel C,
and move the input pulse value to the the value of the last input (I1), panel D. In
blue are the transitions implemented by the RNN. In red are the transitions imple-
mented by the LTVDS using the same ICs. The mean squared error between the
LTVDS and the RNN for both transitions was 0.074 and 0.0067, respectively.

20

>
w

Mean squared error
S,
N
Input/Output/Target Values
o

N

6% 0t 1P 20 40 60 80 100

Perturbation Level Time (s)
C D

Original Network Perturbed Network

-lo Bl I |
904 = =10 15 20

.'.

PC3

1
<CF

Figure 9: Structural perturbations. A To study the ability of our method to find
meaningful structure in a perturbed network, Gaussian noise was added to the
recurrent matrix of the RNN with 0 mean and standard deviation 7. The red 'x’
marks the = 0.006 noise level used in further studies. We show a plot of mean
squared error of the RNN output as a function of the noise level, . B Example
of perturbed network with n = 0.006. Same color scheme as Figure 6. C A view
of the 2D slow point manifold showing the variability in values of g along the
manifold for the original network. D Similar to (C) for the perturbed network.
Note that all g values are higher in this case.

21

are satisfied) near relevant network trajectories and studying the linear approxi-
mations around those points is useful. To this end, we outlined an optimization
approach to finding slow points, including fixed points, based on the auxiliary
function g. Depending on usage, minimization of this function finds global and
local minima, and also regions in phase space with an arbitrarily specified slow-
ness.

We demonstrated how true fixed points were integrally involved in how an
RNN solves the 3-bit flip-flop task, creating both the memory states and the saddle
points to transition between them. We also analyzed an RNN trained to generate
an input-dependent sine wave, showing that input-dependent fixed points were re-
sponsible for the relevant network oscillations, despite those oscillations occuring
far from the fixed points. In both cases we found that saddle points with primar-
ily stable dimensions and only a couple of unstable dimensions were responsible
for much of the interesting dynamics. In the case of the 3-bit flip-flop, saddles
implemented the transition from one memory state to another. For the sine wave
generator the oscillations could be explained by the slightly unstable oscillatory
linear dynamics around each input-dependent saddle point.

Finally, we showed how global minima, local minima and regions of slow
speed were used to create an approximate plane attractor, necessary to implement
a 2-point moving average of randomly timed input pulses. The approximate plane
attractor was implemented using mainly slow points along a 2D manifold.

There are several reasons why studying slow points, and not only fixed points,
is important. First, a trained network does not have to be perfect — few realistic
tasks require infinite memory or precision, so it could be that forming a slow point
is a completely adequate solution for the defined timescales a given input/output
relationship. Second, in the presence of noise, the behavior of a fixed point and
a very slow point might be indistinguishable. Third, funneling network dynamics
can be achieved by a slow point, and not a fixed point (Figure 5). Fourth, neither
trained networks nor biological ones can be expected to be perfect. Studying the
slow points of the perturbed plane attractor showed that our technique is sensitive
enough to detect dynamical structure in a highly perturbed or highly approximate
structure.

The 3-bit flip-flop example was trained using the FORCE learning rule (Sus-
sillo and Abbott, 2009), which affected the network dynamics by modifying the
three output vectors. The input-dependent sine wave generator and 2-point mov-
ing average were trained using the Hessian-Free optimization technique for RNN's
(Martens and Sutskever, 2011) and all the synaptic strengths and biases were mod-
ified. Despite the profound differences in these two training approaches, our fixed

22

point method was able to make sense of the network dynamics in both cases.

Even though the RNNs we trained were high-dimensional, the tasks we trained
them on were intentionally simple. It remains to be seen whether our technique
can be helpful in dissecting higher-dimensional problems, and almost certainly
depends on the task at hand as the input and task definition explicitly influence
the dimensionality of the network state.

Our technique, and the dynamical concepts explored using it, may also provide
insight on the observed experimental findings of low-dimensional dynamics in in-
vivo neuroscience experiments, (Romo et al., 1999; Stopfer et al., 2003; Jones
et al., 2007; Ahrens et al., 2012). For example, we found that a saddle point fun-
nels large volumes of phase space into two directions and so may be a dynamical
feature used in neural circuits that inherently reduces the dimension of the neural
activity. Since the networks we studied were trained as opposed to designed, and
therefore initially their implementation was unknown, our method and results are
compatible with studies attempting to understand biological neural circuits, for
example, (Huerta and Rabinovich, 2004; Machens et al., 2005; Rabinovich et al.,
2008; Liu and Buonomano, 2009; Ponzi and Wickens, 2010).

There are several possible interesting extensions to this technique. While the
system and examples we studied were continuous in nature, the application of
our technique to discrete RNNs presents no difficulties. Another extension is to
apply the fixed point and slow point analysis to systems with time-varying inputs
during those times that the input is varying. As the auxiliary function we used
relies only on part of the inequalities (3, 4), it is possible that a more elaborate
auxiliary function could be more efficient. Finally, an interesting direction would
be to apply this technique to spiking models.

6 Methods

6.1 Minimizing g(x)

Our proposed technique to find fixed points, ghosts and slow points of phase space
involves minimizing the non-convex, nonlinear scalar function g(x) = % IF(x)%.
Our implementation involves using the function fminunc, MatLab’s unconstrained
optimization front-end. For effective optimization, many optimization packages,
including fminunc, require as a function of a particular x, the gradient (equation
6), and the Hessian (equation 7). Because g(x) is a sum of squared function values,
we implemented instead the Gauss-Newton approximation to the Hessian. We

23

found it to be effective and simpler to compute (Boyd and Vandenberghe, 2004).
It is defined by neglecting the second term on the right hand side of equation 7,

N
OF, OF
Gij= Y ===+ (17)
k

The Hessian matrix approaches the Gauss-Newton matrix as the optimization ap-
proaches a fixed point. In summary, the core of our implementation included a
single function that computes three objects as a function of a specific state vec-
tor: g(x), %(X) (equation 6), and G(x) (equation 17) for the generic RNN network
equations defined by equation 20.

Since g(x) is not convex, it is important to start the minimization from many
different ICs. For all the RNN examples, we first ran the RNN to generate state
trajectories during typical operation of the RNN. Random subsets of these state
trajectories were chosen as ICs for the optimization of g(x). After the optimization
terminated, depending on whether the value of g(x) was below some threshold,
either the optimization was started again from a different IC or the optimization
routine ended successfully. To find fixed points and ghosts, the optimization was
run until the optimizer returned either success of failure. Assuming a successful
optimization run, we called a candidate point a fixed point if the value of ¢ was
on the order of magnitude of the tolerances set in the optimization. We called a
candidate point a ghost if g was greater than those tolerances, indicative of a local
minimum. To find arbitrarily defined slow points, the value of g was monitored
at every iteration and if the value fell below the arbitrary cutoff, the optimization
was terminated successfully at that iteration.

For the 3-bit flip-flop and sine wave generator examples, the function tolerance
was set to 1e-30.

For the 3-bit flip-flop and 2-point moving average, the input was not used when
finding fixed points, as the inputs were simple pulses and we were interested in
the long-term behavior of the two systems. However, for the sine wave generator,
since the input conditionally defines a new dynamical system for each oscillation
frequency, the input was used in finding the fixed points. Concretely, this means x
in equation 6 included the static input that specified the target frequency, and that
the fixed points found did not exist in the absence of this input.

24

6.2 3-Bit flip-flop

We extend equations 10-11 to include inputs and outputs of the network,

N 3 3
X =—x; + Z Jikre + Z WiIl:BZk + Z Bk (18)
k k k
N
7= Z Wiri, (19)
3

where u is a 3D input variable coupled to the system through the input weight
matrix B. The output z is the 3D linear readout of the network defined by the
output matrix W. In echostate networks, the output is fed back into the system
via feedback weights, here denoted W¥B, In this example tanh was used as the
nonlinear transfer function, 4. Randomly timed input pulses were placed on the
input lines and the targets were defined as in the Results section. The result of the
FORCE training algorithm(Sussillo and Abbott, 2009) was a modification to the
output weights W, which due to output feedback, is a rank-3 modification to the
effective recurrent connectivity and thus a modification of the network dynamics
(Figure 2, right panel). As the sample input and output traces on the left panel of
Figure 2 show, the trained network performed the task well.

6.3 Sine wave generator

We used a randomly connected network of the form defined by
N 1
%= =X+) Juri+) Budy + by (20)
k k

N
z= Z Were + b, 1)
k

with network dimension, N = 200, and input dimension, / = 1. We used tanh as
the nonlinearity and added bias terms b} and b° to the two equations respectively.
To allow the training to go through, before each training batch the network was
initially driven with the signal sin(w;t) + j/51 + 0.25 to set the initial state of the
network, where j indexes the 51 different frequency values for the sine waves.
During training, the input signal was static at j/51 + 0.25. The target frequen-
cies, w;, were equally spaced between 0.1 and 0.6 radians. After training, the

25

1D network readout, z, successfully generated sin(w;t) with only the static input
j/51+0.25 driving the network (no initial driving sinusoidal input was necessary).
We trained the network to perform this task using the Hessian-Free optimization
technique for RNNs (Martens and Sutskever, 2011). The result of this training
algorithm was a modification to the matrices B, J, the vector w, as well as the
biases b* and b*.

6.4 2-Point moving average

The network trained to implement the 2-point moving average was of the same
form as equations 20 and 21. The size of the network was 100 dimensions, with
two inputs and one output. The first input contained randomly timed pulses lasting
one second with each pulse taking a random value between -1 and 1, uniformly.
The second input was an indicator variable, giving a pulse with value 1 whenever
the first input was valid and was otherwise 0. The minimum time between pulses
was 5s, and the maximum was 30s. The target for the output was the average
of the last two input pulses. To minimally affect the dynamics, the target was
specified for only a brief period before the next input pulse and was otherwise
undefined (see Figure 6 green traces.) The target was also defined to be zero at the
beginning of the simulation. This network was also trained using the Hessian-Free
optimization technique for RNNs (Martens and Sutskever, 2011). The network
mean squared error was on the order of le-7.

For Figure 7 we selected the best local minima we could find by setting the
optimizer tolerance to le-27 with a maximum number of iterations set to 10000.
This resulted in two ghosts/fixed points whose values were in the order of le-21.
Given the potential for pathological curvature (Martens, 2010) in ¢ in an example
with a line or plane attractor, it’s possible that the two fixed points found are
actually ghosts. However, the value of g at these two points is so small as to make
no practical difference between the two, so we refer to them as fixed points in the
main text, since the dynamics are clearly structured by them.

We also selected slow points by varying the slow point acceptance (g value)
between le-19 and le-4, with 200 attempts for a slow point per tolerance level.
Slow points with g value greater than the tolerance were discarded. To visualize
the approximate plane attractor, we performed principal component analysis on
the slow points of the unperturbed system with g < le-4. The subspace shown is
the first 3 principal components.

In the comparison of the LTVDS against the full RNN, we compared the tran-
sitions of the current input to the last input (I1), and to the input before last (10).

26

We decoded both I1 and I0 using the optimal linear projection found by regressing
the respective I0 or I1 values against the network activations across all trials.
The linear time varying dynamical system was defined as followed:

fort =1to T, steps of At
x’ = closest slow point to x(¢)
ox(t) = x(1) - x°
ox(t) = F'(x*) 6x(1) + F(x*)
OX(t + At) = 8x(1) + At 6X(1)
X(t+ Ar) = xX° + 0x(t + Ar)

end,

where x° is the closest slow point to the current state and F’'(x*) is the Jacobian
around that slow point. The set of potential x* was 2000 slow points from the
2D manifold, found by setting the optimizer tolerances such that the g optimiza-
tion found slow points with values just below 1e-10. This value was chosen as a
compromise between the quality of the linearized system at the slow point, which
requires a stringent g tolerance, and full coverage of the approximate plane attrac-
tor, which requires a larger g tolerance. The transition simulations were initialized
by choosing a random input pulse value for every slow point. Then the full RNN
was simulated for 1 second to correctly simulate the strong input. The network
state at the end of the 1s was used as the IC for the comparison simulations of
both the RNN and the LTVDS. The simulations were run for 20 seconds, allow-
ing for equilibration to the 2D manifold for both the full RNN and the LTVDS
approximation.

For the perturbation experiments, we chose 7 values between le-7 and 0.1. For
each value of 1, we generated 50 perturbed networks where the perturbation was
zero mean Gaussian noise with standard deviation 7 added to the recurrent weight
matrix. For each of the 50 networks, 1000 random examples were evaluated.
The error for each n value was averaged across networks and examples. The
approximate plane attractor shown in Figure 9D is with n = 0.006, a large n
value, but where the network still functioned with some drift.

7 Acknowledgements

We thank Misha Tsodyks, Merav Stern, Stefano Fusi and Larry Abbott for helpful
conversations. DS was funded by NIH grant MH093338. OB was funded by the

27

Gatsby and Swartz Foundations and also by NIH grant MH093338.

References

Ahrens, M. B., Li, J. M., Orger, M. B., Robson, D. N., Schier, A. F., Engert, F., and
Portugues, R. (2012). Brain-wide neuronal dynamics during motor adaptation
in zebrafish. Nature, 485(7399):471-477.

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependen-
cies with gradient descent is difficult. IEEE Transactions on Neural Networks,
5(2):157-166.

Boyd, S. P. and Vandenberghe, L. (2004). Convex Optimization. Cambridge Univ
Pr.

Hopfield, J. and Tank, D. (1986). Computing with neural circuits: a model. Sci-
ence, 233(4764):625-633.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent col-
lective computational abilities. Proceedings of the National Academy of Sci-
ences of the United States of America, 79(8):2554-2558.

Huerta, R. and Rabinovich, M. (2004). Reproducible Sequence Generation In
Random Neural Ensembles. Physical Review Letters, 93(23):238104.

Jaeger, H. and Haas, H. (2004). Harnessing nonlinearity: predicting chaotic sys-
tems and saving energy in wireless communication. Science, 304(5667):78-80.

Jones, L. M., Fontanini, A., Sadacca, B. F., Miller, P., and Katz, D. B. (2007).
Natural stimuli evoke dynamic sequences of states in sensory cortical ensem-
bles. Proceedings of the National Academy of Sciences of the United States of
America, 104(47):18772—-18777.

Liu, J. K. and Buonomano, D. V. (2009). Embedding multiple trajectories in sim-
ulated recurrent neural networks in a self-organizing manner. J Neuroscience,
29(42):13172-13181.

Maass, W., Joshi, P., and Sontag, E. D. (2007). Computational aspects of feedback
in neural circuits. PLoS Comput Biol, 3(1):e165.

28

Maass, W., Natschléger, T., and Markram, H. (2002). Real-time computing with-

out stable states: a new framework for neural computation based on perturba-
tions. Neural Computation, 14(11):2531-2560.

Machens, C. K., Romo, R., and Brody, C. D. (2005). Flexible control of
mutual inhibition: a neural model of two-interval discrimination. Science,
307(5712):1121-1124.

Martens, J. (2010). Deep learning via Hessian-free optimization. In Proceedings
of the 27th International Conference on Machine Learning (ICML).

Martens, J. and Sutskever, 1. (2011). Learning recurrent neural networks with
hessian-free optimization. In Proceedings of the 28th International Conference
on Machine Learning (ICML).

Ott, E. (2002). Chaos in Dynamical Systems. Cambridge Univ Pr.

Ponzi, A. and Wickens, J. (2010). Sequentially switching cell assemblies in ran-
dom inhibitory networks of spiking neurons in the striatum. The Journal of neu-
roscience : the official journal of the Society for Neuroscience, 30(17):5894—
5911.

Rabinovich, M. 1., Huerta, R., Varona, P., and Afraimovich, V. S. (2008). Transient
cognitive dynamics, metastability, and decision making. PLoS Comput Biol,
4(5):e1000072.

Romo, R., Brody, C. D., Herndndez, A., and Lemus, L. (1999). Neuronal
correlates of parametric working memory in the prefrontal cortex. Nature,
399(6735):470-473.

Rumelhart, D., Hinton, G., and Williams, R. (1985). Learning Internal Represen-
tations by Error Propagation. Parallel Distributed Processing, 1:319-362.

Stopfer, M., Jayaraman, V., and Laurent, G. (2003). Intensity versus identity
coding in an olfactory system. Neuron, 39(6):991-1004.

Strogatz, S. H. (1994). Nonlinear Dynamics And Chaos. With Applications To
Physics, Biology, Chemistry, And Engineering. Westview Pr.

Sussillo, D. and Abbott, L. F. (2009). Generating coherent patterns of activity
from chaotic neural networks. Neuron, 63(4):544-557.

29

Wang, X. J. (2008). Decision making in recurrent neuronal circuits. Neuron,
60(2):215-234.

30

